
Resource Management Interface Specs Scott Jackson
Release v. 3.0.3 Brett Bode
29 JUN 2004 David Jackson
 Kevin Walker

Scalable Systems Software Resource Management and Accounting Protocol

(SSSRMAP) Wire Protocol

Status of this Memo

This is a specification defining a wire level protocol used between Scalable
Systems Software components. It is intended that this specification will continue
to evolve as these interfaces are implemented and thoroughly tested by time and
experience.

Abstract

This document is a specification describing a connection-oriented XML-based
application layer client-server protocol for the interaction of resource
management and accounting software components developed as part of the
Scalable Systems Software Center. The SSSRMAP Wire Protocol defines a
framing protocol that includes provisions for security. The protocol is specified in
XML Schema Definition and rides on the HTTP protocol.

Table of Contents

1 Introduction... 2
2 Conventions Used in this Document... 2

2.1 Keywords .. 3
2.2 XML Case Conventions.. 3
2.3 Schema Definitions... 3

3 Encoding ... 3
3.1.1 Schema Header and Namespaces.. 3
3.1.2 The Envelope Element .. 4
3.1.3 The Body Element... 4

4 Transport Layer... 5
5 Framing ... 5

5.1 Message Header Requirements... 5
5.2 Message Chunk Format .. 6
5.3 Reply Header Requirements ... 6
5.4 Reply Chunk Format... 6
5.5 Message and Reply Tail Requirements and Multiple Chunks............................ 6
5.6 Examples... 7

5.6.1 Sample SSSRMAP Message Embedded in HTTP Request 7
5.6.2 Sample SSSRMAP Reply Embedded in HTTP Response 7

6 Asynchrony... 7

7 Security ... 8
7.1 Security Token.. 8

7.1.1 The SecurityToken Element .. 8
7.1.2 Security Token Types ... 9

7.1.2.1 Symmetric Key ... 9
7.1.2.2 Asymmetric Key ... 9
7.1.2.3 Password ... 10
7.1.2.4 Cleartext.. 10
7.1.2.5 Kerberos.. 10
7.1.2.6 GSI (X.509)... 11

7.1.3 Example .. 11
7.2 Authentication... 11

7.2.1 The Signature Element ... 12
7.2.2 The DigestValue Element ... 12
7.2.3 The SignatureValue Element .. 13
7.2.4 Signature Example .. 13

7.3 Confidentiality .. 14
7.3.1 The EncryptedData Element... 15
7.3.2 The EncryptedKey Element .. 15
7.3.3 The CipherValue Element... 16
7.3.4 Encryption Example.. 17

8 Acknowledgements... 18
9 References... 18

1 Introduction

A major objective of the Scalable Systems Software [SSS] Center is to create a
scalable and modular infrastructure for resource management and accounting on
terascale clusters including resource scheduling, grid-scheduling, node daemon
support, comprehensive usage accounting and user interfaces emphasizing portability
to terascale vendor operating systems. Existing resource management and accounting
components feature disparate APIs (Application Programming Interfaces) requiring
various forms of application coding to interact with other components.

This document proposes a wire level protocol expressed in an XML envelope to be
considered as the foundation of a standard for communications between and among
resource management and accounting software components. Individual components
additionally need to define the particular XML binding necessary to represent the
message format for communicating with the component.

2 Conventions Used in this Document

2.1 Keywords

The keywords “MUST”, “MUST NOT”, “REQUIIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in RFC2119 [RFC2119].

2.2 XML Case Conventions

In order to enforce a consistent capitalization and naming convention across all
SSSRMAP specifications “Upper Camel Case” (UCC) and “Lower Camel Case”
(LCC) Capitalization styles shall be used. UCC style capitalizes the first character
of each word and compounds the name. LCC style capitalizes the first character of
each word except the first word. [XML_CONV][FED_XML]

1. SSSRMAP XML Schema and XML instance documents SHALL use the

following conventions:
• Element names SHALL be in UCC convention (example:

<UpperCamelCaseElement/>.
• Attribute names SHALL be in LCC convention (example:

<UpperCamelCaseElement
lowerCamelCaseAttribute=”Whatever”/>.

2. General rules for all names are:
• Acronyms SHOULD be avoided, but in cases where they are used,

the capitalization SHALL remain (example: XMLSignature).
• Underscores (_), periods (.) and dashes (-) MUST NOT be used

(example: use JobId instead of JOB.ID, Job_ID or job-id).

2.3 Schema Definitions

SSSRMAP Schema Definitions appear like this

In case of disagreement between the schema file and this specification, the schema
file takes precedence.

3 Encoding

Encoding tells how a message is represented when exchanged. SSSRMAP data
exchange messages SHALL be defined in terms of XML schema [XML_SCHEMA].

3.1.1 Schema Header and Namespaces

The header of the schema definition is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<schema
 xmlns=”http://www.w3.org/2001/XMLSchema”
 xmlns:sssrmap=”http://www.scidac.org/ScalableSystems/SSSRMAP”
 targetNamespace=”http://www.scidac.org/ScalableSystems/SSSRMAP”
 elementFormDefault="qualified">

3.1.2 The Envelope Element

SSSRMAP messages and replies are encapsulated in the Envelope element. There
are two possibilities for the contents of this element. If the contents are
unencrypted, this element MUST contain a Body element and MAY contain a
Signature element (refer to the section on Security). If the contents are encrypted,
this element MUST contain exactly one EncryptedData element (refer to the
section on Security). The Envelope element MAY contain namespace and other
xsd-specific information necessary to validate the document against the schema.
In addition, it MAY have any of the following attributes which may serve as
processing clues to the parser:

• type – A message type providing a hint as to the body contents such as
“Request” or “Notification”

• component – A component type such as “QueueManager” or
“LocalScheduler”

• name – A component name such as “OpenPBS” or “Maui”
• version – A component version such as “2.2p12” or “3.2.2”

<complexType name="EnvelopeType">
 <choice minOccurs=”1” maxOccurs=”1”>
 <choice minOccurs=”1” maxOccurs=”2”>
 <element ref="sssrmap:Signature" minOccurs="0" maxOccurs="1"/>
 <element ref="sssrmap:Body" minOccurs="1" maxOccurs="1"/>
 </choice>
 <element ref=”sssrmap:EncryptedData” minOccurs=”1” maxOccurs=”1”/>
 </choice>
 <attribute name="type" type=”string” use="optional"/>
 <attribute name="component" type=”string” use="optional"/>
 <attribute name="name" type=”string” use="optional"/>
 <attribute name="version" type=”string” use="optional"/>
</complexType>

<element name="Envelope" type="sssrmap:EnvelopeType"/>

3.1.3 The Body Element

• SSSRMAP messages and replies are encapsulated in the Body element.
This element MUST contain exactly one Request or Response element.

<complexType name="BodyType">
 <choice minOccurs="1" maxOccurs="1">
<element ref="sssrmap:Request" minOccurs="0" maxOccurs="1"/> <element
ref="sssrmap:Response" minOccurs="0" maxOccurs="1"/>
 <any minOccurs="0" maxOccurs="1" namespace="##other"/>
 </choice>
</complexType>

<element name="Body" type="sssrmap:BodyType"/>

4 Transport Layer

This protocol will be built over the connection-oriented reliable transport layer
TCP/IP. Support for other transport layers could also be considered, but native
support for TCP/IP can be found on most terascale clusters and automatically
handles issues such as reliability and connectionfullness for the application
developer implementing the SSSRMAP protocol.

5 Framing

Framing specifies how the beginning and ending of each message is delimited.
Given that the encoding will be expressed as one or more XML documents,
clients and servers need to know when an XML document has been fully read in
order to be parsed and acted upon.

SSSRMAP uses the HTTP 1.1 [HTTP] protocol for framing. HTTP uses a byte-
counting mechanism to delimit the message segments. HTTP chunked encoding is
used. This allows for optional support for batched messages, large message
segmentation and persistent connections.

5.1 Message Header Requirements

The HTTP request line (first line of the HTTP request header) begins with POST
and is followed by a URI and the version of the HTTP protocol that the client
understands. The URI MUST consist of a single slash, followed by the protocol
name in uppercase and a major version number (i.e. /SSSRMAP3).

The Content-Type must be specified as test/xml. Charset may be optionally
specified and defaults to US-ASCII. It is recommended that charset be specified as
“utf-8” for maximum interoperability.

The Transfer-Encoding must be specified as chunked. The Content-Length must
NOT be specified as the chunk size is specified in the message chunk.

Other properties such as User-Agent, Host and Date are strictly optional.

5.2 Message Chunk Format

A message chunk consists of a chunk size in hexadecimal format (whose value is
the number of bytes in the XML message not including the chunk size and
delimiter) delimited by a CR/LF “\r\n” and followed by the message payload in
XML that consists of a single XML document having a root element of Envelope.

5.3 Reply Header Requirements

The HTTP response line (first line of the HTTP response header) begins with
HTTP and a version number, followed by a numeric code and a message indicating
what sort of response is made. These response codes and messages indicate the
status of the entire response and are as defined by the HTTP standard. The most
common response is 200 OK, indicating that the message was received and an
appropriate response is being returned.

The Content-Type must be specified as text/xml. Charset may be optionally
specified and defaults to US-ASCII. It is recommended that charset be specified as
“utf-8” for maximum interoperability.

The Transfer-Encoding MUST be specified as chunked. The Content-Length must
NOT be specified.

Other properties such as Server, Host and Date are strictly optional.

5.4 Reply Chunk Format

A reply chunk consists of a chunk size in hexadecimal format (whose value is the
number of bytes in the XML reply not including the chunk size and delimiter)
delimited by a CR/LF “\r\n” and followed by the reply payload in XML that
consists of a single XML document having a root element of Envelope.

5.5 Message and Reply Tail Requirements and Multiple Chunks

This specification only requires that single chunks be supported. A server may
optionally be configured to handle requests with persistent connections (multiple

chunks). It will be the responsibility of clients to know whether a particular server
supports this additional functionality. After all chunks have been sent, a connection
is terminated by sending a zero followed by a carriage return-linefeed combination
(0\r\n) and closing the connection.

5.6 Examples

5.6.1 Sample SSSRMAP Message Embedded in HTTP Request

POST /SSSRMAP3 HTTP/1.1\r\n
Content-Type: text/xml; charset=”utf-8”\r\n
Transfer-Encoding: chunked\r\n

 \r\n
 9A\r\n
 <Envelope …/>
 0\r\n

5.6.2 Sample SSSRMAP Reply Embedded in HTTP Response

HTTP/1.1 200 OK\r\n
Content-Type: text/xml; charset=”utf-8”\r\n
Transfer-Encoding: chunked\r\n
\r\n
2B4\r\n
<Envelope …/>
0\r\n

6 Asynchrony

Asynchrony (or multiplexing) allows for the handling of independent exchanges
over the same connection. A widely-implemented approach is to allow pipelining
(or boxcarring) by aggregating requests or responses within the body of the
message or via persistent connections and chunking in HTTP 1.1. Pipelining helps
reduce network latency by allowing a client to make multiple requests of a server,
but requires the requests to be processed serially [RFC3117]. Parallelism could be
employed to further reduce server latency by allowing multiple requests to be
processed in parallel by multi-threaded applications.

Segmentation may become necessary if the messages are larger than the available
window. With support for segmentation, the octet-counting requirement that you
need to know the length of the whole message before sending it can be relegated
to the segment level – and you can start sending segments before the whole
message is available. Segmentation is facilitated via “chunking” in HTTP 1.1.

The current SSSRMAP strategy supports only a single request or response within
the Body element. A server may optionally support persistent connections from a
client via HTTP chunking. Segmentation of large responses is also optionally
supported via HTTP chunking. Later versions of the protocol could allow
pipelined requests and responses in a single Body element.

7 Security

SSSRMAP security features include capabilities for integrity, authentication,
confidentiality, and non-repudiation. The absence or presence of the various
security features depend upon the type of security token used and the protection
methods you choose to specify in the request.

For compatibility reasons, SSSRMAP specifies six supported security token
types. Extensibility features are included allowing an implementation to use
alternate security algorithms and security tokens. It is also possible for an
implementation to ignore security features if it is deemed nonessential for the
component. However, it is highly RECOMMENDED that an implementation
support at least the default security token type in both authentication and
encryption.

7.1 Security Token

A security token may be included in either the Signature block, and/or in the
EncryptedData block (both described later) as an implicit or explicit
cryptographic key. If this element is omitted, the security token is assumed to be a
secret key shared between the client and the server.

7.1.1 The SecurityToken Element

This element is of type String. If the security token conveys an explicit key, this
element’s content is the value of the key. If the key is natively expressed in a
binary form, it must be converted to base64 encoding as defined in XML Digital
Signatures (“http://www.w3.org/2000/09/xmldsig#base64”). If the type is not
specified, it is assumed to be of type “Symmetric”.

It may have any of the following optional attributes:

• type – the type of security token (described subsequently)
o A type attribute of “Symmetric” specifies a shared secret key

between the client and server. This is the default.

o A type attribute of “Asymmetric” specifies the use of public
private key pairs between the client and server.

o A type attribute of “Password” encrypts and authenticates with a
user password known to both the client and server.

o A type attribute of “Cleartext” allows the passing of a cleartext
username and password and depends on the use of a secure
transport (such as SSL or IPSec).

o A type attribute of “Kerberos5” specifies a kerberos token.
o A type attribute of “X509v3” specifies an X.509 certificate.

• name – the name of the security token which serves as an identifier for the
actor making the request (useful when the key is a password, or when the
key value is implicit as when a public key is named but not included)

<complexType name="SecurityTokenType" mixed=”true”>
 <simpleContent>
 <extension base="string">
 <attribute name="type" type="string" use="optional"/>
 <attribute name="name" type="string" use="optional"/>
 </extension>
 </simpleContent>
</complexType>

<element name=”SecurityToken" type="sssrmap:SecurityTokenType"/>

7.1.2 Security Token Types

SSSRMAP defines six standard security token types:

7.1.2.1 Symmetric Key

The default security token specifies the use of a shared secret key. The secret key
is up to 128-bits long and known by both client and server. When using a
symmetric key as a security token, it is not necessary to specify the type attribute
with value “Symmetric” because this is assumed when the attribute is absent. The
name attribute may be used to specify which key to use if there are multiple
symmetric keys. If the user provides a password to be sent to the server for
authentication, then the password is encrypted with the secret key using a default
method=”kw-tripledes” (XML ENCRYPTION
http://www.w3.org/2001/04/xmlenc#kw-tripledes), base64 encoded and included as
the string content of the SecurityToken element. If the client authenticated the user,
then the SecurityToken element is empty .The same symmetric key is used in both
authentication and encryption.

7.1.2.2 Asymmetric Key

Public and private key pairs can be used to provide non-repudiation of the client (or
server). The client and the server must each have their own asymmetric key pairs.
This mode is indicated by specifying the type attribute as “Asymmetric”. The name
attribute should be specified indicating the actor issuing the request. If the user
provides a password to be sent to the server for authentication, then the password is
encrypted with the server’s public key using a default method=”rsa-1_5” (XML
ENCRYPTION http://www.w3.org/2001/04/xmlenc#rsa-1_5), base64 encoded and
included as the string content of the SecurityToken element. If the client
authenticated the user, then the SecurityToken element is empty .The sender’s
private key is used in authentication (signing) while the recipient’s public key is
used for encryption.

7.1.2.3 Password

This mode allows for a username password combination to be used under the
assumption that the server also knows the password for the user. This security
token type is indicated by specifying a value of “Password” for the type attribute.
The password itself is used as the cryptographic key for authentication and
encryption. The name attribute contains the user name of the actor making the
request. The SecurityToken element itself is empty.

7.1.2.4 Cleartext

This security mode is equivalent to passing the username and password in the
clear and depends upon the use of a secure transport (such as SSL or IPSec). The
purpose of including this security token type is to enable authentication to occur
from web browsers over SSL or over internal LANs who use IPSec to encrypt all
traffic. The password (or a hash of the password like in /etc/passwd) would have
to be known by the server for authentication to occur. In this mode, neither
encryption or signing of the hash is performed at the application layer. This mode
is indicated by specifying a value of “Cleartext” for the type attribute. The name
attribute contains the user name of the actor making the request and the string
content of the SecurityToken element is the unencrypted plaintext password.

7.1.2.5 Kerberos

The use of a Kerberos version 5 token is indicated by specifying “Kerberos5” in
the type attribute. The name attribute is used to contain the kerberos user id of the
actor making the request. The SecurityToken element contains two subelements.
The Authenticator element contains the authenticator encoded in base64. A Ticket
element contains the service-granting ticket, also base64 encoded.

7.1.2.6 GSI (X.509)

The Grid Security Infrastructure (GSI) which is based on public key encryption,
X.509 certificates, and the Secure Sockets Layer (SSL) communication protocol
can be indicated by specifying a type attribute of “X509v3”. The name attribute
contains the userid used that the actor was mapped to in the local system. The
string content of the SecurityToken element is the GSI authentication message
including the X.509 identity of the sender encoded in base64.

7.1.3 Example

<SecurityToken type=”Asymmetric” name=”scottmo”>

 MIIEZzCCA9CggAwIBAgIQEmtJZc0rqrKh5i...
 </SecurityToken>

7.2 Authentication

Authentication entails how the peers at each end of the connection are identified
and verified. Authentication is optional in an SSSRMAP message or reply.
SSSRMAP uses a digital signature scheme for authentication that borrows from
concepts in XML Digital Signatures [XML_DSIG]. In addition to authentication,
the use of digital signatures also ensures integrity of the message, protecting
exchanges from third-party modification.

When authentication is used, a Signature element is prepended as the first element
within the Envelope element. All of the security modes will create a digest of the
data for integrity checking and store this in base64 encoding in a DigestValue
element as a child of the Signature element. The digital signature is created by
encrypting the hash with the appropriate security token and storing this value in a
SignatureValue element as a child of the Signature element. The security token
itself is included as a child of the Security element within a SecurityToken
element.

There are a number of procedural practices that must be followed in order to
standardize this approach. The digest (or hash) is created over the contents of the
Envelope element (not including the Element tag or its attributes). This might be
over one or more Request or Notify elements (or Response or Ack elements) and
necessarily excludes the Signature Element itself. (Note that any data encryption
is performed after the creation of the digital signature and any decryption is
performed before authenticating so the EncryptedData element will not interfere
with this process. Hence, the signature is always based on the (hashed but)
unencrypted data). For the purposes of generating the digest over the same value,
it is assumed that the data is first canonicalized to remove extraneous whitespace,
comments, etc according to the XML Digital Signature algorithm

(“http://www.w3.org/TR/2001/REC-xml-c14n-20010315”) and a transform is
applied to remove namespace information. As a rule, any binary values are always
transformed into their base64 encoded values when represented in XML.

7.2.1 The Signature Element

The Signature element MUST contain a DigestValue element that is used for
integrity checking. It MUST also contain a SecurityToken element that is used to
indicate the security mode and token type, and to verify the signature. It MUST
contain a SignatureValue element that contains the base64 encrypted value of the
signature wrought on the hash UNLESS the security token type indicates
Cleartext mode where a signature would be of no value with the encryption key
being sent in the clear -- in this case we use the password itself for
authentication).

<complexType name="SignatureType">
 <choice minOccurs="2" maxOccurs="3">
 <element ref="sssrmap:DigestValue" minOccurs="1" maxOccurs="1"/>
 <element ref="sssrmap:SignatureValue" minOccurs="1" maxOccurs="1"/>
 <element ref="sssrmap:SecurityToken" minOccurs="0" maxOccurs="1"/>
 </choice>
</complexType>

<element name="Signature" type="sssrmap:SignatureType"/>

7.2.2 The DigestValue Element

The DigestValue element contains the cryptographic digest of the message data.
As described above, the hash is generated over the Body element. The data to be
hashed must first be canonicalized and appropriately transformed before
generating the digest since typically an application will read in the XML
document into an internal binary form, then marshal (or serialize) the data into a
string which is passed as input to the hash algorithm. Different implementations
marshal the data differently so it is necessary to convert this to a well-defined
format before generating the digest or the clients will generate different digest
values for the same XML. The SHA-1 [SHA-1] message digest algorithm
(http://www.w3.org/2000/09/xmldsig#sha1) SHALL be used as the default
method for generating the digest. A method attribute is defined as an extensibility
option in case an implementation wants to be able to specify alternate message
digest algorithms.

It MAY have a method attribute:

• method – the message digest algorithm.

o A method attribute of “sha1” specifies the SHA-1 message digest
algorithm. This is the default and is implied if this attribute is
omitted.

<complexType name="DigestValueType">
 <simpleContent>
 <extension base="string">
 <attribute name="method" type="string" use="optional"/>
 </extension>
 </simpleContent>
</complexType>

<element name="DigestValue" type="sssrmap:DigestValueType"/>

7.2.3 The SignatureValue Element

The SignatureValue element contains the digital signature that serves the
authentication (and potentially non-repudiation) function. The string content of
the SignatureValue element is a base64 encoding of the encrypted digest value.
The HMAC algorithm [HMAC] based on the SHA1 message digest
(http://www.w3.org/2000/09/xmldsig#hmac-sha1) SHALL be used as the default
message authentication code algorithm for user identification and message
integrity. A method attribute is defined as an extensibility option in case an
implementation wants to be able to specify alternate digital signature algorithms.

It MAY have a method attribute:

• method – the digest signature algorithm.
o A method attribute of “hmac-sha1” specifies the HMAC SHA-1

digital signature algorithm. This is the default and is implied if this
attribute is omitted.

<complexType name="SignatureValueType">
 <simpleContent>
 <extension base="string">
 <attribute name="method" type="string" use="optional"/>
 </extension>
 </simpleContent>
</complexType>

<element name="SignatureValue" type="sssrmap:SignatureValueType"/>

7.2.4 Signature Example

Pre-authentication:

<Envelope>
 <Body>

<Request action=”Query” actor=”kenneth”>
 <Object>User</Object>

 <Get name=”EmailAddress”></Get>
 <Where name=”Name”>scott</Where>
 </Request>
 </Body>
</Envelope>

Post-authentication:

<Envelope>

<Signature>
 <DigestValue>
 LyLsF0Pi4wPU...
 </DigestValue>
 <SignatureValue>
 DJbchm5gK...
 </SignatureValue>

<SecurityToken type=”Asymmetric” name=”kenneth”>
 MIIEZzCCA9CggAwIBAgIQEmtJZc0rqrKh5i...

 </SecurityToken>
</Signature>
<Body>

<Request action=”Query” actor=”kenneth”>
 <Object>User</Object>

 <Get name=”EmailAddress”></Get>
 <Where name=”Name”>scottmo</Where>
 </Request>
 </Body>
</Envelope>

7.3 Confidentiality

Confidentiality involves encrypting the sensitive data in the message, protecting
exchanges against third-party interception and modification. Confidentiality is
optional in an SSSRMAP message or reply. When confidentiality is required,
SSSRMAP sessions use block cipher encryption with concepts borrowed from the
emerging XML Encryption [XML_ENC] standard.

When confidentiality is used, encryption is performed over all child elements of
the Envelope element, i.e. on the message data as well as any signature (The
encrypted data is not signed -- rather the signature is encrypted). This data is
replaced in-place within the envelope with an EncryptedData element. The data is
first compressed using the gzip algorithm [ZIP]. Instead of encrypting this
compressed data with the security token directly, a 192-bit random session key is

generated by the sender and used to perform symmetric encryption on the
compressed data. This key is itself encrypted with the security token and included
with the encrypted data as the value of the EncryptedKey element as a child of the
EncryptedData element. The ciphertext resulting from the data being encrypted
with the session key is passed as the value of a CipherValue element (also a child
of the EncryptedData element). As in the case with authentication, the security
token itself is included as a child of the Security element within a SecurityToken
element.

7.3.1 The EncryptedData Element

When SSSRMAP confidentiality is required, the EncryptedData element MUST
appear as the only child element in the Envelope element. It directly replaces the
contents of these elements including the data and any digital signature. It MUST
contain an EncryptedKey element that is used to encrypt the data. It MUST
contain a CipherValue element that holds the base64 encoded ciphertext. It MAY
also contain a SecurityToken element that is used to indicate the security mode
and token type. If the SecurityToken element is omitted, a Symmetric key token
type is assumed. Confidentiality is not used when a security token type of
“Cleartext” is specified since it would be pointless to encrypt the data with the
encryption key in the clear.

<complexType name="EncryptionDataType">
 <choice minOccurs="0" maxOccurs="1">
 <element ref="sssrmap:EncryptedKey" minOccurs="1" maxOccurs="1"/>
 <element ref="sssrmap:CipherValue" minOccurs="1" maxOccurs="1"/>
 <element ref="sssrmap:SecurityToken" minOccurs="1" maxOccurs="1"/>
 </choice>
</complexType>

<element name="EncryptedData" type="sssrmap:EncryptedDataType"/>

7.3.2 The EncryptedKey Element

The EncryptedKey element is a random session key encrypted with the security
token. This approach is used for a couple of reasons. In the case where public key
encryption is used, asymmetric encryption is much slower than symmetric
encryption and it makes sense to use a symmetric key for encryption and pass
along it along by encrypting it with the recipient’s public key. It is also useful in
that the security token which does not change very often (compared to the session
key which changes for every connection) is used on a very small sampling of data
(the session key), whereas if it was used to encrypt the whole message an attacker
could more effectively exploit an attack against the ciphertext. The CMS Triple
DES Key Wrap algorithm “kw-tripledes” SHALL be used as the default method
for key encryption. The session key is encrypted using the security token, base64
encoded and specified as the string content of the EncryptedKey element. A

method attribute is defined as an extensibility option in case an implementation
wants to be able to specify alternate key encryption algorithms.

It is REQUIRED that an implementation use a cryptographically secure Pseudo-
Random number generator. It is RECOMMENDED that the session key be
cryptographically generated (such as cyclic encryption, DES OFB, ANSI X9.17
PRNG, SHA1PRNG, or ANSI X12.17 (used by PGP)).

It MAY have a method attribute:

• method – the key encryption algorithm.
o A method attribute of “kw-tripledes” specifies the CMS Triple

DES Key Wrap algorithm. This algorithm is specified by the XML
Encryption [XML_ENC] URI
“http://www.w3.org/2001/04/xmlenc#kw-tripledes”. It involves
two Triple DES encryptions, a random and known Initialization
Vector (IV) and a CMS key checksum. A 192-bit key encryption
key is generated from the security token, lengthened as necessary
by zero-padding. No additional padding is performed in the
encryptions. This is the default and is implied if this attribute is
omitted.

<complexType name="EncryptedKeyType">
 <simpleContent>
 <extension base="string">
 <attribute name="method" type="string" use="optional"/>
 </extension>
 </simpleContent>
</complexType>

<element name="EncryptedKey" type="sssrmap:EncryptedKeyType"/>

7.3.3 The CipherValue Element

The CipherValue element contains the message (and possibly signature) data
encrypted with the random session key. The ciphertext is compressed using the
gzip algorithm [ZIP], encrypted by the designated method, base64 encoded and
included as the string content of the CipherValue element. The Triple DES
algorithm with Cipher Block Chaining (CBC) feedback mode SHALL be used as
the default method for encryption. A method attribute is defined as an
extensibility option in case an implementation wants to be able to specify
alternate data encryption algorithms.

It MAY have a method attribute:

• method – the data encryption algorithm.

o A method attribute of “tripledes-cbc” specifies the Triple DES
algorithm with Cipher Block Chaining (CBC) feedback mode. This
algorithm is specified by the XML Encryption [XML_ENC] URI
identifier “http://www.w3.org/2001/04/xmlenc#tripledes-cbc”. It
specifies the use of a 192-bit encryption key and a 64-bit
Initialization Vector (IV). Of the key bits, the first 64 are used in
the first DES operation, the second 64 bits in the middle DES
operation, and the third 64 bits in the last DES operation. The
plaintext is first padded to a multiple of the block size (8 octets)
using the padding scheme described in [XMLENC] for Block
Encryption Algorithms (Padding per PKCS #5 will suffice for
this). The resulting cipher text is prefixed by the IV. This is the
default and is implied if this attribute is omitted.

<complexType name="CipherValueType">
 <simpleContent>
 <extension base="string">
 <attribute name="method" type="string" use="optional"/>
 </extension>
 </simpleContent>
</complexType>

<element name="CipherValue" type="sssrmap:CipherValueType"/>

7.3.4 Encryption Example

In this example, a simple request is demonstrated without a digital signature for the
sake of emphasizing the encryption plaintext replacement.

Pre-encryption:

<Envelope>

<Body>
 <Response>

 <Status>true</Status>
 <Code>000</Code>
 <Count>1</Count>
 <Data>
 <User>

 <EmailAddress>Scott.Jackson@pnl.gov</EmailAddress>
 </User>
 </Data>
 </Response>
 </Body>

</Envelope>

Post-encryption:

<Envelope>
 <EncryptedData>
 <EncryptedKey>
 NAkE9iQofYhyOfiHZ29kkEFVJ30CAwEAAaMSM...
 </EncryptedKey>

<CipherValue>
mPCadVfOMx1NzDaKMHNgFkR9upTW4kgBxyPW...

 </CipherValue>
<SecurityToken type=”Asymmetric” name=”kenneth”>

 MIIEZzCCA9CggAwIBAgIQEmtJZc0rqrKh5i...
 </SecurityToken>

 </EncryptedData>
</Envelope>

8 Acknowledgements

9 References

[RFC2119] S. Bradner, “Key Words for Use in RFCs to Indicate Requirement Levels”,
RFC 2119, March 1997.

 [BEEP] M. Rose, “The Blocks Extensible Exchange Protocol Core”, RFC 3080, March
2001.

[HMAC] H. Krawczyk, M. Bellare, R. Canetti, “HMAC, Keyed-Hashing for Message
Authentication”, RFC 2104, February 1997.

[SHA-1] U.S. Department of Commerce/National Institute of Standards and Technology,
“Secure Hash Standard”, FIPS PUB 180-1.

[SSS] “Scalable Systems Software”, http://www.scidac.org/ScalableSystems

[HTTP] “Hypertext Transfer Protocol – HTTP/1.1”, RFC 2616, June 1999.

[XML_CONV] “I-X and <I-N-CA> XML Conventions”.

[FED_XML] “U.S. Federal XML Guidelines”.

[RFC3117] M. Rose, “On the Design of Application Protocols”, Informational RFC
3117, November 2001.

[XML_DSIG] D. Eastlake, J. Reagle Jr., D. Solo, “XML Signature Syntax and
Processing”, W3C Recommendation, 12 February 2002.

[XML_ENC] T. Imamura, B. Dillaway, E. Smon, “XML Encryption Syntax and
Processing”, W3C Candidate Recommendation, 4 March 2002.

[XRP] E. Brunner-Williams, A. Damaraju, N. Zhang, “Extensible Registry Protocol
(XRP)”, Internet Draft, expired August 2001.

[XML] Bray, T., et al, “Extensible Markup Language (XML) 1.0 (Second Edition)”, 6
October 2000.

[XML_SCHEMA] D. Beech, M. Maloney, N. Mendelshohn, “XML Schema Part 1:
Structures Working Draft”, April 2000.

[ZIP] J. Gailly, M. Adler, “The gzip home page”, http://www.gzip.org/

